The rapid development of the mechanized tunneling in current decades has raised serious concerns about the environmental impact of large quantities of the muck. EPB-TBMs require the use of foaming agents for optimizing the soil conditioning. These agents could contain some chemicals (e.g., sodium lauryl ether sulfate – SLES) that are not included in the current legislation at the Italian or EU level. In order to minimize the project costs, it is useful to re-use the excavated soil as a reusable by-product that requires that it does not have any environmental impact on the ecosystems. For this purpose, to draw up a site-specific protocol is a practical and successful tool to evaluate the environmental compatibility of excavated soil during the tunneling. It can rely on one-month experiments at a microcosm or mesocosm scale using soil coming from the excavated site. At fixed times (from 0 to 28 days) the chemical degradation of the chemical together with ecotoxicological tests can be performed on soil or soil-water extracts. Both aquatic and terrestrial organisms are used and the choice of the tests depends on the final destination site. The results of the residual concentration of SLES in soil and in the elutriates, together with those of the ecotoxicological tests, make it possible to evaluate the temporary storage of spoil material and the time necessary for obtaining a safe soil debris to be used as a by-product. These data are usually included in the site-specific protocol to be applied during the excavation phase. This paper describes the main methodological aspects regarding microcosm experiments.
The rapid development of the mechanized tunneling in current decades has raised serious concerns about the environmental impact of large quantities of the muck. EPB-TBMs require the use of foaming agents for optimizing the soil conditioning. These agents could contain some chemicals (e.g., sodium lauryl ether sulfate – SLES) that are not included in the current legislation at the Italian or EU level. In order to minimize the project costs, it is useful to re-use the excavated soil as a reusable by-product that requires that it does not have any environmental impact on the ecosystems. For this purpose, to draw up a site-specific protocol is a practical and successful tool to evaluate the environmental compatibility of excavated soil during the tunneling. It can rely on one-month experiments at a microcosm or mesocosm scale using soil coming from the excavated site. At fixed times (from 0 to 28 days) the chemical degradation of the chemical together with ecotoxicological tests can be performed on soil or soil-water extracts. Both aquatic and terrestrial organisms are used and the choice of the tests depends on the final destination site. The results of the residual concentration of SLES in soil and in the elutriates, together with those of the ecotoxicological tests, make it possible to evaluate the temporary storage of spoil material and the time necessary for obtaining a safe soil debris to be used as a by-product. These data are usually included in the site-specific protocol to be applied during the excavation phase. This paper describes the main methodological aspects regarding microcosm experiments.