Groundwater heat pump systems diffusion and groundwater resources protection

Geothermal Energy, being a clean and sustainable source of energy, is gaining importance worldwide due to various reasons. Geothermal power can be generated throughout the year on twenty four hour basis as it’s not much dependent on ambient temperature and weather conditions. Recently there is an increased interest in exploitation of low enthalpy geothermal resources for other applications such as geothermal space heating and cooling for domestic, industrial and commercial applications.

GroundWater Heat Pump systems (GWHPs) extract water from one or more wells, pass it through a heat exchanger or a heat pump, which either extracts heat from, or rejects heat, and discharge water back into the aquifer or nearby surface water.

This reinjection disturbs the natural aquifer temperature, producing a local temperature anomalies (cold or heat plume) known as the thermal affected zone (TAZ).

Moreover, it is important to know if the TAZ can interfere with downgradient pre-existing plants or subsurface infrastructure or with the plant itself (thermal feedback). It is then important to know, even before constructing a GWHP system, the future TAZ extent around the planned injection point.

Due to these risks, the increasing number of GWHP systems enforces the need for new criteria to develop subsurface energy policies that allow planning their spatial distribution. To obtain these sustainability criteria, the results of different dedicated studies are here proposed, in order to optimize the design and operation of GWHP systems.

Geothermal Energy, being a clean and sustainable source of energy, is gaining importance worldwide due to various reasons. Geothermal power can be generated throughout the year on twenty four hour basis as it’s not much dependent on ambient temperature and weather conditions. Recently there is an increased interest in exploitation of low enthalpy geothermal resources for other applications such as geothermal space heating and cooling for domestic, industrial and commercial applications.

GroundWater Heat Pump systems (GWHPs) extract water from one or more wells, pass it through a heat exchanger or a heat pump, which either extracts heat from, or rejects heat, and discharge water back into the aquifer or nearby surface water.

This reinjection disturbs the natural aquifer temperature, producing a local temperature anomalies (cold or heat plume) known as the thermal affected zone (TAZ).

Moreover, it is important to know if the TAZ can interfere with downgradient pre-existing plants or subsurface infrastructure or with the plant itself (thermal feedback). It is then important to know, even before constructing a GWHP system, the future TAZ extent around the planned injection point.

Due to these risks, the increasing number of GWHP systems enforces the need for new criteria to develop subsurface energy policies that allow planning their spatial distribution. To obtain these sustainability criteria, the results of different dedicated studies are here proposed, in order to optimize the design and operation of GWHP systems.


ISSN 1121-9041

CiteScore:
2020: 3.8
CiteScore measures the average citations received per peer-reviewed document published in this title.
CiteScore values are based on citation counts in a range of four years (e.g. 2016-2019) to peer-reviewed documents (articles, reviews, conference papers, data papers and book chapters) published in the same four calendar years, divided by the number of these documents in these same four years (e.g. 2016 —19).
Source Normalized Impact per Paper (SNIP):
2019: 1.307
SNIP measures contextual citation impact by weighting citations based on the total number of citations in a subject field.
SCImago Journal Rank (SJR)
2019: o.657
SJR is a prestige metric based on the idea that not all citations are the same. SJR uses a similar algorithm as the Google page rank; it provides a quantitative and a qualitative measure of the journal's impact.
Journal Metrics: CiteScore: 1.0 , Source Normalized Impact per Paper (SNIP): 0.381 SCImago Journal Rank (SJR): 0.163

Supported by


Edited by


GEAM - Associazione Georisorse e Ambiente c/o Dipartimento di Ing.dell’Ambiente, del Territorio e delle infrastrutture Politecnico di Torino
Copyright @ GEAM - Designed by DESIGN GANG - Privacy Policy