Considerations on the Glide Snow Avalanches based on the Stauchwall Model

Avalanches are natural events that can have consequences such as silvicultural losses, infrastructural damages, fatalities. In this paper, the attention is given to glide avalanches starting by a glide crack, a tensile crack that propagates at the crown – the upper release limit – due to the internal stress variation. However, the presence of a glide crack does not always give rise to a glide avalanche. In fact, when the slab starts to move, interacts with the stauchwall (the downslope boundary of the slab) which can fail or withstand.The Stauchwall model was adopted in order to verify if the gliding avalanche is triggered or not, by analyzing the dynamic stability of a slab subjected to an initial perturbation. In this paper, the model has been expanded by coupling it with a stress failure criterion. Thanks to this new failure criterion, it is possible to investigate the possible causes of subsequent glide avalanches triggering (in terms of hours or even days) after the crack propagation. In addition, the effect of a skier’s fall/brake on the slab stability is analyzed. Finally, a sensitivity analysis of the model pointed out the important role played by the basal snow/soil friction. Therefore, it is shown that actions meant to increase this characteristic may be taken into account to effectively prevent glide avalanches

Avalanches are natural events that can have consequences such as silvicultural losses, infrastructural damages, fatalities. In this paper, the attention is given to glide avalanches starting by a glide crack, a tensile crack that propagates at the crown – the upper release limit – due to the internal stress variation. However, the presence of a glide crack does not always give rise to a glide avalanche. In fact, when the slab starts to move, interacts with the stauchwall (the downslope boundary of the slab) which can fail or withstand.The Stauchwall model was adopted in order to verify if the gliding avalanche is triggered or not, by analyzing the dynamic stability of a slab subjected to an initial perturbation. In this paper, the model has been expanded by coupling it with a stress failure criterion. Thanks to this new failure criterion, it is possible to investigate the possible causes of subsequent glide avalanches triggering (in terms of hours or even days) after the crack propagation. In addition, the effect of a skier’s fall/brake on the slab stability is analyzed. Finally, a sensitivity analysis of the model pointed out the important role played by the basal snow/soil friction. Therefore, it is shown that actions meant to increase this characteristic may be taken into account to effectively prevent glide avalanches


ISSN 1121-9041

CiteScore:
2020: 3.8
CiteScore measures the average citations received per peer-reviewed document published in this title.
CiteScore values are based on citation counts in a range of four years (e.g. 2016-2019) to peer-reviewed documents (articles, reviews, conference papers, data papers and book chapters) published in the same four calendar years, divided by the number of these documents in these same four years (e.g. 2016 —19).
Source Normalized Impact per Paper (SNIP):
2019: 1.307
SNIP measures contextual citation impact by weighting citations based on the total number of citations in a subject field.
SCImago Journal Rank (SJR)
2019: o.657
SJR is a prestige metric based on the idea that not all citations are the same. SJR uses a similar algorithm as the Google page rank; it provides a quantitative and a qualitative measure of the journal's impact.
Journal Metrics: CiteScore: 1.0 , Source Normalized Impact per Paper (SNIP): 0.381 SCImago Journal Rank (SJR): 0.163

Supported by


Edited by


GEAM - Associazione Georisorse e Ambiente c/o Dipartimento di Ing.dell’Ambiente, del Territorio e delle infrastrutture Politecnico di Torino
Copyright @ GEAM - Designed by DESIGN GANG - Privacy Policy