Submit article

Filters

Find by keywords

"mixing well"

Harmonic Pulse Testing was introduced in the early 1970’s as a special case of pulse testing. It is characterized by a periodic variation of production/injection rate. Subsequent developments proved that it could provide the same information as a conventional well test (permeability and skin, heterogeneity) in addition to those given by a pulse test (areal connectivity within the reservoir) if proper...


In mature oilfields, decommissioned oil and gas wells with depths reaching approximately 5000-6000 metres represent good candidate structures for geothermal heat exploitation, as they can provide useful access to subsurface geothermal energy resources. Comprehending the possibility to economically harness geothermal energy by means of coaxial WBHEs is bound to the main features of the physical model,...


Deep aquifers represent a strategic resource because of their quality, generally better than rivers and shallow aquifers. More specifically, in Piedmont Region (Italy) they represent a key source of drinking water and therefore must be protected from qualitative and quantitative degradation.

In...


Description of the material. In this paper a novel methodology for the estimation of the formation permeability, based on the integration of resistivity modeling and near wellbore modeling, is presented. Results obtained from the application to a real case is shown and discussed. The well log interpretation process provides a reliable estimation of the main petrophysical parameters such as porosity, fluid...


The paper provides an overview of the several scientific and technical issues and challenges to be addressed for underground storage of carbon dioxide, hydrogen and mixtures of hydrogen and natural gas. The experience gained on underground energy systems and materials is complemented by new competences to adequately respond to the new needs raised by transition from fossil fuels to renewables. The experimental...

Submit article

Filters


ISSN 1121-9041

CiteScore:
2020: 3.8
CiteScore measures the average citations received per peer-reviewed document published in this title.
CiteScore values are based on citation counts in a range of four years (e.g. 2016-2019) to peer-reviewed documents (articles, reviews, conference papers, data papers and book chapters) published in the same four calendar years, divided by the number of these documents in these same four years (e.g. 2016 —19).
Source Normalized Impact per Paper (SNIP):
2019: 1.307
SNIP measures contextual citation impact by weighting citations based on the total number of citations in a subject field.
SCImago Journal Rank (SJR)
2019: o.657
SJR is a prestige metric based on the idea that not all citations are the same. SJR uses a similar algorithm as the Google page rank; it provides a quantitative and a qualitative measure of the journal's impact.
Journal Metrics: CiteScore: 1.0 , Source Normalized Impact per Paper (SNIP): 0.381 SCImago Journal Rank (SJR): 0.163

Supported by


Edited by


GEAM - Associazione Georisorse e Ambiente c/o Dipartimento di Ing.dell’Ambiente, del Territorio e delle infrastrutture Politecnico di Torino
Copyright @ GEAM - Designed by DESIGN GANG - Privacy Policy